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This paper introduces the theory of an impedance-mobility matrix model used to predict
the structural vibration transmission between two plates, which are mechanically coupled
via an active mounting system. With this model the active and passive isolation e!ectiveness
of di!erent types of mounting systems has been studied. In particular, the case of
a three-mount isolator system with inertial or reactive actuators has been investigated in
order to assess the in#uence of the mount sti!ness and of the presence of rigid elements
(block masses) at each end of the mounts. Three cost functions have been investigated: "rst,
the minimization of the total structural power transmitted by the source to the receiver;
second, the cancellation of out-of-plane input velocities to the receiver and third the
cancellation of out-of-plane input forces to the receiver. The simulations carried out have
shown that the best passive and active isolation are both achieved when soft mounts are
used. The number of mounts and the presence of block masses at each end of the mounts
signi"cantly a!ect the passive isolation but have shown a smaller in#uence on the active
isolation. The three control strategies studied have shown similar active control e!ectiveness
in all cases examined and for both inertial or reactive control actuators. The validity of the
model has also been assessed by comparing the predicted levels of vibration transmission
with and without control with measured data taken from a laboratory experiment.
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1. INTRODUCTION

The work summarized in this paper forms part of a collaborative research programme to
investigate the structure- and air-borne sound transmission through the double-wall
structure of aircraft or helicopters. The goal of this project is to develop modelling
techniques to predict accurately the structure- and air-borne sound transmission through
a general structure of this type. This paper deals speci"cally with the theoretical analysis of
structural vibration transmission through an array of active mounts which are the only
connection between two plates.

The problem of structure-borne noise transmission between #exible mechanical systems
connected via a set of mounts cannot be studied using the standard mathematical models
given in reference [1] which consider the mounting system as a single lumped spring in
parallel with a damper. A more detailed model is needed which accounts for the e!ects of
multiple mounts and for the e!ects of multiple-degrees-of-freedom (d.o.f.s) vibration
transmission at the connecting points. Also, the distributed nature of the source and receiver
structures and some isolator components has to be taken into account so that coupling
sAuthor to whom correspondence should be addressed.
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e!ects between the vibration components related to di!erent types of waves propagating in
the elements of the three systems is accounted for.

The "nite element method (FEM) [2], could be employed for this type of study but it
generates large matrix models that require very long simulations for a relatively small
frequency range of analysis, even when the latest personal computer or work stations are used.
Two alternative approaches are more suitable for structure-borne noise transmission
problems at audio frequencies. The "rst one is the statistical energy analysis (SEA) approach
[3]. This approach is based on power transmission concepts using coupling factors between
source and receiver structures assuming the two structures to be of either in"nite or
semi-in"nite extent. This simpli"cation allows the prediction of the vibration level of the
source and receiver structures with a relatively simple matrix model that could be utilized up
to high frequencies (several kHz) with relatively fast computer simulations. The simpli"cation
introduced by the SEA approach of neglecting the resonant e!ect of the source and receiver
structures could lead to some problems in the so-called low}mid-frequency range below
about 1 kHz, particularly if the e!ects of active control devices such as an active mounting
system are under study. The second approach based on impedance and mobility matrices
(IMM), has therefore been considered so that the resonant behaviour of the three elements
and the multiple d.o.f.s vibration transmission at the junctions of each element can be
accounted for in the calculations with a relatively simple matrix model.

The SEA [4] and IMM approaches have both been used in this project so that two tools
were available for the understanding of the passive and active isolation e!ects produced by
the mounting system studied and developed in the project. In this paper, the simulations
carried out with a matrix model based on point and transfer mobilities or impedances is
presented [5]. This model considers the system divided into three elements: the source, the
mounting system and the receiver. These elements are assumed to be connected at a "nite
number of point junctions at which multi d.o.f.s vibration transmission occurs. The three
elements are modelled as distributed one- or bi-dimensional systems in which structural
waves can propagate. The mounts are modelled as passive rubber elements with either
a reactive or an inertial control actuator which have been represented, respectively, by a pair
of reactive forces applied at each end of the mounts or by a sky hook control force applied at
one end of the mounts. The e!ects of some parts of the mounting systems or of the source and
receiver systems can also be included in the model as lumped masses, springs and dampers.

The vibration of the source and receiver systems has been expressed in terms of kinetic
energy. In particular, an estimate of the kinetic energy represented by the square values of
the out-of-plane velocities at "ve points on the source and receiver plates has been
calculated so that the estimate of kinetic energy derived from experimental measurements
taken on those points can be compared with the results obtained with the simulations.

This mathematical model allows the study of di!erent control strategies by considering
the minimization of a quadratic cost function. In particular, the e!ect of cancelling either
the axial velocity or axial force at the top of the mount has been compared with the optimal
control approach of minimizing the total power transmitted from the source to the receiver.

The e!ect of the mounts sti!nesses and the e!ects of lumped masses attached at each end
of the mounts has also been assessed. Finally, a comparison between the results obtained
here with those from an experimental investigation are also presented.

2. MATRIX MODEL FOR AN ACTIVE ISOLATING SYSTEM

In references [6}19] di!erent types of mathematical models are described for the study of
isolator systems composed of a source of vibration, a transmitting system and a receiver



Figure 1. Scheme of a general complete isolating system.
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structure. Each of these models considers in detail some aspects of the vibration
transmission. This section describes the mobility-impedance matrix model used to derive
the steady state response to harmonic excitation of the isolator system considered in this
paper. With this model it is possible to consider the following features of an isolator system:
"rst, the e!ects due to a #exible and distributed source as well, mounting and receiver
structures; second, the e!ects generated by a multiple mounting isolator system and third,
the multiple d.o.f.s vibration transmission at the junctions of each mount.

The complete isolating system is divided into three #exible parts as shown in Figure 1: the
source, the mounting system, composed of n elements, and the receiver. These parts are
connected at a "nite number of junctions. At each junction, the motion and the forces
transmitted are characterized by six complex parameters at a single frequency of excitation,
which is characterized by a time dependence of the form exp(jut). These velocity and force
parameters are grouped in a velocity junction vector and a force junction vector which, for
the jth junction can be written as
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With reference to the notation shown in Figure 1, combinations of these junction vectors
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where v
sj
, f

sj
represent the velocity and the force junction vectors at the source junction for

the jth mount, while v
rj
, f

rj
represent the velocity junction vector and the force junction
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vector at the receiver junction for the jth mount. The vectors of velocities and forces of the
mounting system are given by
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where v
m1j

, f
m1j

represent the velocity junction vector and the force junction vector at the
source junction for the jth mount and v

m2j
, f

m2j
represent the velocity junction vector and

the force junction vector at the receiver junction for the jth mount.
The dynamics of the source and the receiver are studied using a mobility matrix approach

so that their velocity and force vectors can be written in the form
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are mobility matrices, respectively, of the source and the
receiver structures and q
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where F
xj

, F
yj

, F
zj

are the complex external forces in the x, y and z directions and ¹
xj

, ¹
yj

,
¹
zj

are the complex external moments referred, respectively, to the x-, y- and z-axes acting at
position P

j
of the source or receiver structures respectively.

The #anking excitation acting on the receiver q
f

could be due to a subsystem connected
with it or to a #anking path connecting the source with the receiver. The dynamics of the
mounting system are expressed using an impedance matrix approach
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where Z
m

is the impedance matrix of the mounting system which relates the linear and
angular velocities at each end of the mounts to the forces and moments at each end of the
mounts as well. V

m
is the excitation matrix which gives the forces and moments at each end

of the mounts due to the control excitations terms which are grouped in the q
s
vector:
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mount position. The source and receiver equations (9) and (10) can be grouped together

into one equation:
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where the mobility matrices and the excitation vector have the form
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and the junctions velocity and force vectors are given by
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where v
sr

and f
sr

are called, respectively, source}receiver velocity vector and source}receiver
force vector. The source receiver vectors are related to the analogous mounting system
vectors by a transformation matrix T in such a way as to satisfy the compatibility condition
(for the velocity vectors) and the equilibrium principle (for the force vectors) at each junction

v
m
"Tv

sr
, f

m
#Tf

sr
"0. (24, 25)

Using these two relations, equations (18) and (15) can be related in such a way as to "nd the
source}receiver velocity vector or the source}receiver force vector as a function of the
primary-#anking and secondary excitation vectors:
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With this model the vibration transmission at each junction is characterized by both
kinematic (linear and angular velocities) and dynamic (forces and moments) parameters
such that two types of problem arise. First, it is impossible to directly compare the vibration
transmission associated with angular velocity and linear velocity or associated with
moment and force and second, the standard approach of using either only velocities or only
forces to represent the vibrations of the system does not give su$cient information about
the e!ective vibration transmission. Goyder and White [20] have suggested that these two
problems can be overcome in the case of isolation of vibration transmission from a rigid
source to a #exible receiver by representing the vibration transmission in terms of total
structural power transmitted to the receiver. This single parameter accounts for the
vibration contribution of all six kinematic and six dynamic parameters at the junctions
between the source and receiver structure. This approach has been used in other studies
[21}26]. The model used in this study allows this approach to be extended to a multiple
mount and multiple d.o.f.s complete isolation system [27]. In fact, using equations (26) and
(27) it is possible to express the time-averaged total power transmitted to the receiver system
in terms of the primary vector and the control vector by using the following equation:

P"1/2ReMfH
r

v
r
N, (32)

where f
r
and v

r
represent, respectively, the force and velocity at the receiver structure.
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Because the ultimate aim of the study carried out is related to isolation of structure-borne
noise transmission it has been preferred to represent the vibration of the receiver structure
in terms of its kinetic energy associated only to the bending wave motion which causes the
sound radiation. The kinetic energy related to the bending motion of a thin bi-dimensional
structure is given by the following relation:

K"P
S

oh Dw5 (s, t) D2 dS, (33)

where o is the density of the material, S is the area of the structure and h (s, t), wR (s, t) are,
respectively, the thickness and the out-of-plane velocity at position (s, t) of the structure.

3. CONTROL STRATEGIES

All of the active control strategies considered in the study summarized here can be
expressed in terms of a quadratic cost function which is minimized and this can always be
written in the form [28]
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The control strategy of (1) minimizing total power transmitted by the source to the receiver
was assumed as a reference for assessing the e$cacy of the cost functions studied which are
(2) the cancellation of out-of-plane input velocities to the receiver and (3) the cancellation of
out-of-plane input forces to the receiver. In this paper, these three control strategies will be
referred to as: (1) total power minimization (J
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where the receiver velocities and forces parameters at the receiver junctions are given by the
two following equations v
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When velocity cancellation is implemented then the cost function has the form
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Figure 2. The system studied.
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When force cancellation is implemented then the cost function has the form
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4. THE SYSTEMS STUDIED

Figure 2 shows the geometry of the system studied. The source and receiver structures are
freely suspended aluminium plates having dimensions of l
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"1)2]1)0 m and

thickness t
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be: density o
s
"o

r
"2796 kg/m3, Young's modulus of elasticity E

s
"E

r
"7)24]

1010 N/m2, the Poisson ratio l
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"0)3, and loss factor g
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"0)01. The three mounts

are modelled as cylinders of soft rubber with either a single sky hook control force acting at
the top end of the mounts or two equal reactive control forces acting at each end of the
mounts. The diameter and the height of the suspensions are, respectively, /

m
"15 mm and

h
m
"15 mm while the physical properties of the rubber are: density o

m
"1078 kg/m3,

Young's modulus of elasticity E
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"1)5]106 N/m2, the Poisson ratio l
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"0)01. The e!ects generated by the components used to

connect the mounting system to the plates and to connect force and velocity sensors at the
top of the mounts has been modelled as a pair of rectangular parallelepiped block masses
connected at each end of the mounts. The dimensions and weight of the masses attached to
the top side of the mounts are: d
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t
"9)8]10~3 kg while

the dimensions and weight of the masses attached to the bottom side of the mounts are:
d
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b
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The source and receiver plates are assumed to be distributed elements and the model
considers only the e!ect of bending waves. In-plane shear and longitudinal waves are
neglected since their sound radiation e!ect is negligible and their coupling to the bending
motion of the plate due to the mounting system is also negligible. The mounts are modelled
as distributed systems on which longitudinal and #exural waves can propagate.



TABLE 1

Mount junction positions at the source plate

x(m) y(m)

S
1

0)2 0)991
S
2

0)6 0)991
S
3

1 0)991

TABLE 2

Mount junction positions at the receiver plate

x(m) y(m)

S
4

0)2 0)009
S
5

0)6 0)009
S
6

1 0)009
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Therefore, the matrix model described in section 2 has been used by considering only
3 d.o.f.s at the mount junctions and at the excitation positions. Appendices A and B describe
the formulation of the driving point and transfer mobility or impedance terms for the plate
and mount systems respectively. The reduction from 6 to 3 d.o.f.s is not trivial and, as
discussed in Appendix B, the equations of the driving point and transfer impedances for the
mount systems di!ers in the two cases.

The velocity and force junction vectors of equations (1,2) have therefore been assumed as
follows:
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Finally, because only sky hook or reactive axial control forces have been considered the
control vector q

sj
of equation (17) assumes the following form
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The monitoring positions of the source P
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and receiver R
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5
plates are

summarized in Tables 3 and 4.



TABLE 3

Monitoring positions at the source plate

x(m) y(m)

P
1

0)26 0)175
P
2

0)26 0)82
P
3

0)55 0)475
P
4

0)77 0)195
P
5

0)96 0)43

TABLE 4

Monitoring positions at the receiver plate

x(m) y(m)

R
1

0)26 0)64
R

2
0)42 0)18

R
3

0)55 0)525
R

4
0)77 0)805

R
5

0)96 0)57
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These positions are called monitoring positions since, for practical purposes, they
have been chosen to represent the vibration levels of the source and receiver plates by an
estimate of the plates kinetic energy associated with the bending motion which is given by
the sum of the squared values of the out-of-plane velocities at the monitoring positions of
the plates:
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The estimate of the source and receiver kinetic energy has been used to compare and
validate the matrix model used in this study with experimental measurements taken on
a similar system.

No #anking excitation was considered to be acting on the receiver plate so that the
matrix equations (9) and (10) assume the following forms:
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Because the mounts are all the same, the impedance equation (15) assumes a simpli"ed
form which is given by the following two equations in the case of a reactive or an inertial
control force scheme respectively:
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Expressions for the mobility M
ij
, impedance Z

ij
and excitation matrix V

1
matrices

are given in Appendices A and B. Once the force parameters at the mounting junction
positions are calculated with equation (27) it is possible to derive the out-of-plane
velocities at the monitoring positions of the source and receiver plate with the following
two relations:
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5. CONTROL EFFECTIVENESS OF THE ISOLATOR SYSTEM

In this section, the results obtained for the simulations of isolator system with the three
rubber mounts shown in Figure 2 are described. Two types of secondary sources are
considered in detail: "rst, a sky-hook control force and second, a reactive control force. The
sky-hook control force can be generated by an inertial actuator placed at the top of the
mount while the reactive control force can be obtained by an actuator placed in parallel
with the passive element of the mount. For each case two plots have been considered: the
"rst (Figure 3) shows the estimate of kinetic energy at the source and receiver panels
calculated with equations (49) and (50), when a harmonic unit primary force F

P3
is exciting



Figure 3. Estimate of the source K
Es

(==) and receiver K
Er

(**) kinetic energy when the primary force
F
p3

is exciting the two-panel system with three-rubber mounts with block masses.

Figure 4. Estimate of the receiver K
Er

kinetic energy when the primary force F
p3

is exciting the two panel system
with three rubber mounts with block masses and a sky-hook control force.==, without control; **, when
total power is minimized; )))))), when forces are cancelled; } )} ) } ) } when velocities are cancelled.
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the system and with no active control, while the second (either Figure 4 or 5) shows the
estimate of kinetic energy of the receiver panels when a harmonic unit primary force F

P3
is

exciting the system, and the secondary forces are set to implement the power minimization,
velocity and force cancellation cost functions described in section 3.

Considering the passive behaviour of the system, as shown in Figure 3. It can be seen that
the three rubber mounts produce good passive isolation e!ects above 300 Hz and the ratio
of the kinematic energy in the source and receiver panel can reach a level of about 30 dB at
1 kHz.

Figures 4 and 5 show the e!ects of the di!erent active control strategies. In general, the
three control strategies under study, power minimization and force or velocity cancellation,



Figure 5. Estimate of the receiver K
Er

kinetic energy when the primary force F
p3

is exciting the two-panel system
with three rubber mounts with block masses and a pair of reactive control forces.==, without control; **,
when total power is minimised; )))))), when forces are cancelled; } ) } ) } ) } ) } when velocities are cancelled.
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have given similar control e!ects. Comparing the results of Figure 4 with those of Figure 5,
no major di!erences in the control e!ectiveness are shown when the reactive actuators are
used in place of the inertial actuators. Both Figures 4 and 5 show that the control
e!ectiveness decreases as the frequency rises. This is because, at low frequencies, the
vibration of the source plate is mainly transmitted via the axial d.o.f. of the mount. In
contrast, at higher frequencies both the axial and angular d.o.f. contribute to the vibration
transmission. The two types of active mounts considered in this paper have only axial
control forces that can e$ciently control the axial vibration transmission but cannot
control the vibration transmission through the angular d.o.f. at higher frequencies. An
active mount with control actuators generating both the axial control force and two control
moments in x and y directions would certainly increase the active isolation at high
frequencies. The multiple mount system of Figure 2 can be regarded as a system capable of
generating control moments in y direction by driving out of phase the axial control forces of
each couple of mounts. A triangular con"guration of the three mounts would allow the
generation of moments in both x and y directions. In any case, this e!ect is given only for
low frequencies where the distance between the mounts is higher than the bending wave
length in the plate [5,29,30].

6. EFFECTS OF THE BLOCK MASSES AND MOUNTING SYSTEM STIFFNESS

The simulations carried out for the three-mount isolators have shown that good passive
isolation is obtained when block masses of 9)8 and 3)1 gm are applied at each end of the
mounts. In this section, the relation between the weight of these masses and the e!ectiveness
of the isolation has been assessed by considering the three rubber-mount isolator system
with sky-hook control forces shown in Figure 2 when the velocity control strategy is
implemented and the masses listed in Table 5 are applied to each end of the three mounts.

The conclusion that can be drawn from Figure 6 is that as the weight of the block masses
rises, both the passive and active isolation tend to increase at higher frequencies. The
additional passive isolation is e!ective at frequencies above about 250 Hz and tends to grow



TABLE 5

=eights of the top and bottom masses

Case =
T
(kg) =

B
(kg)

a 0 0
b 1)5]10~3 5]10~3
c 3.0]10~3 10]10~3
d 6.0]10~3 20]10~3
e 9.0]10~3 30]10~3
f 12.0]10~3 40]10~3

Figure 6. Estimate of the receiver K
Er

kinetic energy before (top plot) and after (bottom plot) active control by
means of the velocity control strategy using sky-hook control forces when the primary force F

p3
is exciting the two

panels system, for the block masses shown in Table 5:== is case (a).
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as the frequency rises. The additional isolation e!ect due to the block masses with active
control is only e!ective above about 620 Hz and then also tends to grow as the frequency
increases. This phenomena is due to the fact that the speci"c impedance of a block mass
rises linearly with frequency. Thus, as the frequency rises, the masses on the receiving
junction of each mount tend to block the axial vibration at this point and so improve the
passive transmission properties above 250 Hz. This axial vibration is already controlled by
the active system, however, and it appears as though in this case the rotary inertia of the
block masses enhances the active transmission properties at higher frequencies by
decreasing the level of rotational velocity transmitted through the mounts, which otherwise
degrades the transmission properties of the active system. Figure 6, bottom plot, shows that
between 360 and 440 Hz the trend described above is inverted for the active isolation case so
that the isolation is slightly reduced as the weight of the masses increases.



TABLE 6

Sti+ness and density of the mounts

Case E
m
(N/m2) o

m
(kg/m3)

a 7)5]104 648
b 1)5]106 1078
c 2)9]107 1508
d 4)3]108 1938
e 5)8]109 2368
f 7)2]1010 2798

Figure 7. Estimate of the receiver K
Er

kinetic energy before (top plot) and after (bottom plot) active control by
means of the velocity control strategy using sky-hook control forces when the primary force F

p3
is exciting the

two-panel system, for the mount sti!nesses shown in Table 6:== is case (a).
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The simulations carried out have also shown that the sti!ness of the mounts a!ect both
the passive and active isolation. The passive and active isolation when velocity cancellation
is implemented has been evaluated with reference to the system with three mounts and
sky-hook control forces shown in Figure 2 by considering a set of mounts whose density
and sti!ness has been chosen between two limiting cases: "rst (a), a very soft rubber mount
and last (f ), a relatively sti! aluminium mount as summarized in Table 6. Considering the
results shown in Figure 7, it can be concluded that both the passive and active isolation tend
to get better as the sti!ness and density of the mounts decrease (e.g., as the speci"c
impedance of the mounts decrease). When the impedance of the mounts is relatively small
compared to that of the source and receiver plates, then the mounts can be deformed in such
a way as to accommodate both the imposed vibration of the source plate and the imposed
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constrain of the receiver plate. This phenomena is more e!ective at higher frequencies since
the speci"c impedance of the mounts decrease linearly with frequency. Also, Figure 7 shows
that as the sti!ness and density of the mounts increase the bene"ts of active control vanish
so that passive and active isolation give similar results. Thus, even if very large control
forces can reduce the axial vibration at the junctions between the mounts and the receiver
plate, still there is a large vibration transmission e!ect via the angular motion of the solid
mount.

7. COMPARISON BETWEEN IMM SIMULATIONS AND EXPERIMENTAL RESULTS

The impedance-mobility matrix model IMM described in this paper has been tested by
comparing the results it produces with two other types of analysis. First, a matrix analysis
which uses measured transfer functions from an experimental arrangement similar to that
described above between the primary and control excitation positions and the control
positions at the mount junctions and the monitoring positions on the receiver panel
denoted MTF, and second, a fully experimental analysis carried out at a set of 24 tones
between 110 and 340 Hz, denoted EA. The comparison has been carried out for the
two-plate system shown in Figure 2 having either a rubber or aluminium mount with
lumped masses at the top and bottom ends and with inertial control actuators acting at the
top end of the mounts. The control strategy tested was the cancellation of axial velocities at
the top of the mounts. The primary excitation has been chosen at position P

3
. Figures 8 and

9 show the estimate of the receiver K
Er

kinetic energy without active control (upper plots)
for the two types of isolator systems. In both cases, rubber and aluminium isolators, very
good agreement has been obtained between the three types of predictions without control.

Figures 8 and 9 also show results with active control (lower plots). The comparison
between the three types of predictions with active control are generally good. Above 150 Hz
the IMM simulations agree quite well with the matrix approach based on measured transfer
functions MTF. Below 150 Hz there are some discrepancies between the IMM and the
MTF predictions which are probably due to the fact that the experimental transfer
functions used by the MTF approach are not reliable below 100 Hz. Also, the bottom plot
of Figure 9 shows that when the aluminium isolator is used there is a mismatching of about
10 dB in a frequency range between 520 and 980 Hz between the predictions with the IMM
model and those obtained from the MFT method. The method using measured transfer
functions, MTF, predicts larger active isolation than that of the analytical model IMM.
This could be due to the non-perfect alignment of the mounts in the experimental rig, so
that a larger control e!ectiveness is predicted, since the experimental control system is able
to reduce not only the vibration transmission due to axial vibration of the mounts but also
the vibration transmission related to the angular vibrations of the mounts.

8. CONCLUSIONS

This paper introduces the theory of an impedance-mobility matrix model used to predict
the structural vibration transmission between two plates coupled via an active mounting
system. With this model the active and passive isolation e!ectiveness of di!erent types of
mounting systems have been studied; in particular, the case of a three-mount isolator
system with inertial actuators applied at the top end of the mounts has been investigated in
order to assess the e!ects generated by the sti!ness of the mounts and the e!ects produced
by the rigid elements (block masses) at each end of the mounts.



Figure 8. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control of
the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-rubber mounts having block masses at the ends:==, measure transfer functions predictions;
**: impedance mobility matrix predictions; , experimental analysis predictions.

Figure 9. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control of
the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-aluminium mounts having block masses at the ends: ==, measure transfer functions
predictions; **: impedance mobility matrix predictions; , experimental analysis predictions.
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Three cost functions have been investigated: "rst, the minimization of the total structural
power transmitted by the source to the receiver; second, the cancellation of out-of-plane input
velocities to the receiver and the cancellation of out-of-plane input forces to the receiver.

The main conclusions of the study carried out can be summarized by the following points.

1. The rubber mount isolator provides better passive isolation e!ects than that with
aluminium mounts, as expected.

2. When block masses are applied at each end of the rubber mounts an extra isolation e!ect
is obtained. This e!ect is negligible when aluminium mounts are used.

3. The three control strategies under study have given similar active control e!ectiveness in
all cases examined.

4. No major di!erences have been found when the reactive actuators are used in place of
the inertial actuators.

5. The presence of block masses mounted at each end of the mounts do not produce
signi"cant e!ects below 620 Hz on the active control performances of both rubber and
aluminium mounts.

6. The rubber active isolators give very good active control performance which goes from
a maximum of about 60 dB reduction at very low frequency to a minimum of a few dB at
about 1 kHz while the active isolator with aluminium mounts gives very poor control
performances.

The model described in this paper has been validated with data given by two other
methods. First, a matrix method based on measured transfer functions and second, an
experimental method which considered real-time active control for tonal excitations.
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Figure A1. Notation of the displacement w at positions P
1

and S
3
, and of the rotations h

x
, and h

y
, at positions

S
3

when a plate is excited in #exure by a point force N
z

and point moments M
x
, and M

y
, at position S

1
.
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APPENDIX A: PLATES MOBILITY MATRICES

The mobility matrices used into equations (53), (54), (57) and (58) have been derived using
modal formulae for the point and transfer mobility terms of a plate excited only in bending
as from reference [31].

The sub-mobility matrix between two generic positions, for example between positions
S
3

and S
1

(see Figure A1) of the source plate is de"ned as follows:
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where assuming the harmonic motion with time dependence of the form exp( jut) and
according to reference [31] the individual mobility terms are given by the following modal
formulae:
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where u is the circular frequency rad/s and g is the loss factor. The symbol &&&'' indicates
a complex value whose absolute value and phase denotes, respectively, the amplitude and
phase of the harmonic variation in time at the driving frequency u of the linear/angular
velocity and force/moment excitation terms. A detailed description on how to calculate
the natural frequencies u

fmn
, modal amplitudes /

mn
, modal slopes t(x)

m,n
, t(y)

mn
and

K
mn

normalization factor for a freely supported thin plate can be found in section 3)7 of
reference [31].

The mobility matrix of equations (57) and (58) relates only the out-of-plane velocity
component wR

j
at the "ve monitoring positions of the source and receiver plates to the

mounting junctions positions force and moment parameters, therefore the sub-mobility
matrix between a monitoring position and a mounting junction position, for example
between positions P

1
and S

1
of the source plate, is de"ned as follows:

M
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wNz
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wMx

(u) MP1S1
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(u)y. (A11)

APPENDIX B: MOUNTING SYSTEM IMPEDANCE AND EXCITATION MATRICES

The impedance matrix used into equations (55) and (56) has been derived by modelling
each mount as a distributed one-dimensional element on which longitudinal and bending
waves propagate. The impedance terms have been calculated by deriving the exact solution
in closed form of the standard second order wave equation of longitudinal waves and of the
Euler}Bernoulli fourth order wave equation of #exural waves [32], assuming the beam
element either with both ends freely suspended or both ends pinned in x and y directions.
Figure A2. Notation of the displacement w and rotations h
x
, and h

y
, point force N

z
and point moments M

x
, and

M
y
at the top and bottom junctions of mount number 2 of the system shown in Figure 2.
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As discussed in section 3, it has been chosen to neglect 3 d.o.f.s at each mount junction.
The following kinematic and dynamic parameters are not taken into account in the matrix
formulation: "rst, the angular velocity and moment in z direction, hQ

z
and M

z
; second, the

linear velocity and force in x direction, uR and N
x
, and third, the linear velocity and force in

y direction, vR and N
y
. Therefore, at each end of the mounts only the linear velocity wR and

angular velocities, hQ
x

and hQ
y
, and only the point force N

z
and point moments, M

x
and M

y
,

are accounted for. Figure A2 shows the notation of these three kinematic and dynamic
parameters at the top and bottom junctions of the mount number 2 whose junctions are
denoted by the symbols S

2
(bottom junction) and S

5
(top junction).

If all six kinematic and dynamic parameters are accounted for at each end of a freely
suspended mount element, the 12]12 impedance matrix would be de"ned as in the
following relation:

N
xS2

N
yS2

N
zS2

M
xS2

M
yS2

M
zS2

N
xS5

"

N
yS5

N
zS5

M
xS5

M
yS5

M
zS5

ZS2S2
Nxu

0 0 0 ZS2S2
Nxh: 0 ZS2S5

Nxu
0 0 0 ZS2S5

Nxhy 0

0 ZS2S2
Nyv

0 ZS2S2
Nyhx 0 0 0 ZS2S5

Nyv
0 ZS2S5

Nyhx 0 0

0 0 ZS2S2
Nzw

0 0 0 0 0 ZS2S5
Nzw

0 0 0

0 ZS2S2
Mxv

0 ZS2S2
Mxhx 0 0 0 ZS2S5

Mxv
0 ZS2S5

Mxhx 0 0

ZS2S2
Myu

0 0 0 ZS2S2
Myhy 0 ZS2S5

Myu
0 0 0 ZS2S5

Myhy 0

0 0 0 0 0 ZS2S2
Mzhz 0 0 0 0 0 ZS2S5

Mzhz
ZS5S2

Nxu
0 0 0 ZS5S2

Nxhy 0 ZS5S5
Nxu

0 0 0 ZS5S5
Nxhy 0

0 ZS5S2
Nyv

0 ZS5S2
Nyhx 0 0 0 ZS5S5

Nyv
0 ZS5S5

Nyhx 0 0

0 0 ZS5S2
Nzw

0 0 0 0 0 ZS5S5
Nzw

0 0 0

0 ZS5S2
Mxv

0 ZS5S2
Mxhx 0 0 0 ZS5S5

Mxv
0 ZS5S5

Mxhx 0 0

ZS5S2
Myu

0 0 0 ZS5S2
Myhy 0 ZS5S5

Myu
0 0 0 ZS5S5

Myhy 0

0 0 0 0 0 ZS5S2
Mzhz 0 0 0 0 0 ZS5S5

Mzhz

u5
S2

v5
S2

w5
S2

hQ
xS2

hQ
yS2

hQ
zS2

u5
S5

,

v5
S5

w5
S5

hQ
xS5

hQ
yS5

hQ
zS5

(B1)

where the six kinematic (linear and angular velocities) and dynamic (force and moment
excitations) parameters at each end of the mount are oriented as in the Figure A3.

The four impedance matrices Z
11

, Z
12

, Z
21

and Z
22

to be used into equations (55) and
(56) can be obtained from the impedance matrix of equation (B1) by removing the rows and
columns for the d.o.f.s neglected. Therefore,

Z
11
"C

ZM S2S2
Nzw

0 0

0 ZM S2S2
Mxhx 0

0 0 Z1 S2S2
MyhyD , Z

12
"C

ZM S2S5
Nzw

0 0

0 ZM S2S5
Mxhx 0

0 0 Z1 S2S5
MyhyD , (B2, B3)

Z
21
"C

ZM S5S2
Nzw

0 0

0 ZM S5S2
Mxhx 0

0 0 Z1 S5S2
MyhyD , Z

22
"C

ZM S5S5
Nzw

0 0

0 ZM S5S5
Mxhx 0

0 0 Z1 S5S5
MyhyD , (B4, B5)

However, some care has to be taken while doing this operation. The impedance terms
related to the axial velocity wR

Sj
and force N

zSi
parameters remains the same as those of the

12]12 impedance matrix (e.g., ZM SiSj
Nzw

"ZSiSj
Nzw

). These four point and transfer impedances,
related to longitudinal waves, are given by the following relations:

ZS2S2
Nzw

(u)"
NI

zS2
(u)

wJR
S2

(u)
"ZS5S5

Nzw
(u)"

NI
zS5

(u)

wJR
S5

(u)
"

1

ju
E
m
A

m
k
lm

j
1

j
2

(B6)



Figure A3 Notation of the six kinematic (linear and angular displacements) and dynamic (force and moment
excitations) parameters at each end of mount number 2 of the system shown in Figure 2.
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Nzw
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ju
E
m
A

m
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where E
m

is the Young's modulus of elasticity, A
m

is the mount cross-sectional area and u is

the circular frequency (rad/s). k
lm
"u/c

lm
"u/JE

m
/o

m
is the longitudinal wave number,

c
lm

is the phase velocity of longitudinal waves and o
m

is the density of the material. The two
parameters j

1
and j

2
are given by

j
1
"cos k

lm
h
m
, j

2
"sin k

lm
h
m

(B8, B9)

where h
m

is the mount height.
Neglecting the angular velocity and moment in the z direction at the two ends of the

mount element, hQ
z
and M

z
, respectively, implies that the two driving point and two transfer

impedance terms related to torsional vibration are not accounted for in the impedance
matrix of the mount element. Therefore, the terms ZSiSj

Mzhz are set to zero and the rows and
columns number 6 and 12 of the impedance matrix given in equation (B1) are taken out.

Neglecting the velocities in x and y directions, uR and vR , and the force components N
x
and

N
y
cannot be treated so simply. In fact, in order to derive the four impedance matrices Z

11
,

Z
12

, Z
21

and Z
22

, it is not su$cient to take o! the impedance terms related to those
kinematic and dynamic parameters (e.g., set ZSiSj

Nxu
"ZSiSj

Nyv
"ZSiSj

Nxhy"ZSiSj
Nyv

"ZSiSj
Mxv

"

ZSiSj
Myu

"0 and delete row and column numbers 1, 2, 7 and 8 of the impedance matrix given in
equation (B1)).

This point is discussed by O'Hara [33] and Rubin [12], who discuss why it is not
generally correct to pick out only some of the elements of a n]n impedance matrix, which
relates force and velocity parameters that are coupled, in order to build up a smaller m]m
impedance matrix. This is because the elements of the n]n or m]m impedance matrices are
derived by imposing a &&constraint'' on the linear or angular velocity parameters accounted
for in the matrix relation f"Zv. For example, the impedance term ZS5S2hxMx

for the 6]6
impedance matrix is calculated assuming the following constraints:

ZS2S5
Mxhx"

MI
xS2

hI
xS5

and w
S2
"w

S5
"h

xS2
"h

yS2
"h

yS5
"0 (B10)
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(note that no constraint is placed on u
S2

, u
S5

, v
S2

, v
S5

, h
zS2

, h
zS5

which can take any value)
and for the 12]12 impedance matrix,

ZS2S5
Mxhx"

MI
xS2

hI
xS5

and u
S2
"u

S5
"v

S2
"v

S5
"w

S2
"w

S5

"h
xS2

"h
yS2

"h
yS5

"h
zS2

"h
zS5

"0. (B11)

Thus, the ZS2S5
Mxhx term di!ers when calculated with either equation (B10) or equation (B11).

This is because the one dimensional mounting element is constrained in a di!erent way in
the two cases.

If instead, a mobility relation v"Mf is considered, it can be shown that the reduction
from a m to a n(m d.o.f.s mobility matrix relation can be carried out simply by
&&collapsing'' the mobility matrix M

m]m
into the M

n]n
. In fact, if the mobility term MS2S5hxMx

is
considered, it can be noticed that whether this term is calculated for a 6]6 or a 12]12
mobility matrix (e.g., either only 3 or all 6 d.o.f.s are accounted for in the matrix relation) the
same result is obtained since only the excitations are constrained in a di!erent way. So for
the 6]6 mobility matrix

MS2S5hxMx
"

hIQ
xS5

MI
xS2

and N
zS2

"N
zS5

"M
xS2

"M
yS2

"M
yS5

"0 (B12)

(note that no constraint is placed on the excitation parameters N
xS2

, N
xS5

, N
yS2

, N
yS5

, M
zS2

,
M

zS5
, although they could be implicitly assumed to be zero) and for the 12]12 mobility matrix

MS2S5hxMx
"

hIQ
xS5

MI
xS2

and N
xS2

"N
xS5

"N
yS2

"N
yS5

"N
zS2

"N
zS5

"M
xS2

"M
yS2

"M
yS5

"M
zS2

"M
zS5

"0. (B13)

Therefore, the 6]6 mobility matrix M
6]6

is correct even if its elements are picked up
from the 12]12 mobility matrix M

12]12
.

In conclusion, the reduction of a m]m impedance matrix to a smaller n]n matrix is
possible only if the kinematic and dynamic parameters of the impedance relation f"Zv are
uncoupled. This is not the case for mobility matrices. It is in fact possible to reduce a m]m
mobility matrix to a smaller n]n matrix without the need of recalculating the mobility
terms even if the kinematic and dynamic parameters of the mobility relation v"Zf are
coupled. Therefore, for the speci"c case examined in this appendix, the impedance terms
ZM SjSi

Mxhx , ZM SjSiMyhy cannot be derived directly from the equivalent ones of the 12]12 impedance
matrix of equation (B1). For their exact calculation there are two options: either they are
analytically calculated assuming the pertinent boundary conditions at each end of the
mount element (e.g., by constraining the uR and vR linear velocities and the N

x
, and N

y
force

components) or they are calculated by inverting a reduced mobility matrix M
6]6

which has
been directly derived from the complete mobility matrix M

12]12
which refers to all six

kinematic and dynamic parameters at each end of the mount element.
However, there is a second problem that has to be considered before moving on to

calculate the impedance terms ZM SjSi
Mxhx and ZM SjSi

Myhy . Flexural waves in a beam, unlike the other
wave types, are represented by four "eld parameters instead of two [32]. For example the
#exural vibration in the x}z plane is represented by the linear velocity and force in
x direction, uR and N

x
, and the angular velocity and moment in y direction, hQ

y
and M

y
. These

four variables are coupled so that the angular velocity hQ
y
at one end of the mount element, let
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us say junction S
2
, due to a collocated moment M

y
can be found only if the linear velocity

uR and force N
x
at the two ends are "xed and if the angular velocity and moment in y direction,

hQ
y
and M

y
, at the opposite end of the one where the angular velocity is determined, junction

S
5
, are speci"ed. Therefore, even when the mobility matrix for the reduced case accounting for

3 d.o.f.s at each end of the mount is calculated, in order to derive the mobility term
MM S2S2hyMy

"hQ
yS2

/M
yS2j

D
MyS5/0

, the values of the linear velocity uR and force N
x
at the two ends has

to be speci"ed. The boundary conditions for the angular velocity hQ
y
and moment M

y
at the

junction S
5

are set to be as those of a freely suspended beam so that hQ
yS5

O0 and M
yS5

"0.
The other four boundary conditions requires some thought before they are "xed. They are in
fact neglected in the formulation of the problem (see section 4). The problem is to transform
the verb &&to neglect'' into a mathematical expression. Indeed, there are four possible choices
for the linear velocity uR and force N

x
at the two ends of the mount element: "rst uR

Sj
"0 and

N
xSj

"0; second, uR
Sj
O0 and N

xSj
O0; third, uR

Sj
"0 and N

xSj
O0 and fourth uR

Sj
O0 and

N
xSj

"0. The "rst two cannot be imposed since the solution of the wave equation would be
undetermined. The third and the fourth one are instead compatible with the #exural wave
equation and, when associated to the boundary condition chosen for the angular velocity and
moment at the two ends, they give rise to the study of either a freely suspended beam whose
boundary conditions at the two ends are hQ

yS5
O0, M

yS5
"0, uR

S2
O0 and N

xS2
"0 or the

study of a pinned}pinned beam having instead the following boundary conditions at the two
ends hQ

yS5
O0, M

ySj
"0, uR

Sj
"0 and N

xSj
O0.

In view of the above-mentioned problem about the reduction of the number of rows and
columns of an impedance matrix, the impedance terms ZM SjSi

Mxhx , ZM SjSiMyhy have been derived by
inverting the mobility matrix given in the following expression:

G
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0
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0
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N

zS5
M

xS5
M

yS5

H . (B14)

This 6]6 mobility matrix has been derived exactly by cancelling row and column
numbers 1, 2, 6}8 and 12 of the complete 12]12 mobility matrix assuming that the mount
element freely suspended:
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All the mobility terms of this mobility matrix can be found in Table 7.1(c) of Bishop and
Johnson [34].

With reference to the other problem discussed above, it has been decided to also calculate
the impedance terms ZM SjSi

Mxhx , ZM SjSi
Myhy for a beam element with both ends pinned in x and

y directions. The same procedure has been followed as for the case of a freely suspended
element. First, the reduced 6]6 mobility matrix has been derived for a mount element with
each end pinned in x and y directions and second, this mobility matrix has been inverted in
order to give the equivalent impedance matrix with the exact ZM SjSi

Mxhx , ZM SjSi
Myhy impedance

terms.
With reference to the freely suspended boundary condition (e.g., uR

Sj
O0, vR

Sj
O0, hQ

xSj
O0,

hQ
ySj

O0 and N
xSj

"0, N
ySj

"0, M
xSj

"0, M
ySj

"0) the eight impedance elements have
been calculated as follows:

ZS2S2
Mxhx(u)"

MI
xS2

(u)

hIQ
xS2

(u)
"ZS5S5

Mxhx(u)"
MI

xS5
(u)

hIQ
xS5

(u)
"

1

ju
E
m
I
m
k
fm

u
3
u
6

u2
6
!u2

7

, (B16)

ZS2S2
Myhy (u)"

M3
yS2

(u)

hIQ
yS2

(u)
"ZS5S5

Myhy(u)"
M3

yS5
(u)

hIQ
yS5

(u)
"!

1

ju
E

m
I
m
k
fm

u
3
u
7

u2
6
!u2

7

, (B17)

ZS2S5
Mxhx(u)"

M3
xS2

(u)

hIQ
xS5

(u)
"ZS5S2

Mxhx (u)"
MI

xS5
(u)

hIQ
xS2

(u)
"!

1

ju
E

m
I
m
k
fm

u
3
u
7

u2
6
!u2

7

, (B18)

ZS2S5
Myhy(u)"

MI
yS2

(u)

hIQ
yS5

(u)
"ZS5S2

Myhy (u)"
MI

yS5
(u)

hIQ
yS2

(u)
"

1

ju
E

m
I
m
k
fm

u
3
u
6

u2
6
!u2

7

. (B19)

where
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(B22)

and k
fm

"u/c
fm

" 4Ju2m@/B is the #exural wave number, c
fm

" 2Ju 4JB/m@ is the phase
velocity of #exural waves, B"E

m
I
m

is the bending sti!ness of the mount,
I
m
"I

x
"I

y
"na4

m
/4 is the area moment of inertia of the circular mount cross-section with

radius a, and m@"o
m
A

m
is the density per unit area of the material.

With reference to the boundary condition (e.g., uR
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"0, lR
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"0, hQ

xSj
O0, hQ

ySj
O0, and

N
xSj

"0, N
ySj

"0, M
xSy

"0, M
ySy

"0) pinned in x and y directions, the eight impedance
elements have been calculated as follows:
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Figure A4. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control
of the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-rubber mounts having block masses at the ends: ==, experimental predictions, **,
simulations assuming the mount element freely suspended.

508 P. GARDONIO AND S. J. ELLIOTT
ZS2S5
Myhy(u)"

MI
yS2

(u)

hIQ
yS5

(u)
"ZS5S2

Myhy(u)"
MI

yS5
(u)

hIQ
yS2

(u)
"

2

ju
E
m
I
m
k
fm

u
1
u

5
u2
5
!u2

8

. (B26)
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Therefore, two set of impedance terms ZM SjSi
Mxhx and ZM SjSi

Myhy have been calculated for the
impedance matrices Z

11
, Z

12
, Z

21
and Z

22
to be used into equations (55) and (56).

The results obtained with the two sets of impedance matrices have been compared with
measured data (as in section 5) in order to estimate which one between the freely suspended
and the pinned in x and y directions boundary conditions is the most representative one for
the system studied in this paper.

The comparison has been carried out for the two-plate system shown in Figure 2 having
either a rubber or aluminium mount with lumped masses at the top and bottom ends
(=

t
"9)8]10~3 kg, =

b
"3)1]10~3 kg) and with inertial control actuators acting at the

top end of the mounts. The control strategy considered is the cancellation of axial velocities
at the top of the mounts. The primary excitation has been chosen at position P

3
. Figures A4



Figure A5. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control
of the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-rubber mounts having block masses at the ends: ==, experimental predictions, **,
simulations assuming the mount element pinned in x and y directions.
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and A5 shows the estimate of the receiver K
Er

kinetic energy without (top plot) and with
(bottom plot) active control for the isolator systems with rubber mounts when the four
impedance matrices Z

11
, Z

12
, Z

21
and Z

22
have been calculated for a freely suspended or

pinned mount element. Figures A6 and A7 shows the same type of plots but for the case
where the four impedance matrices Z

11
, Z

12
, Z

21
and Z

22
have been calculated for an

aluminium mount element.
From these plots it can be seen that when there are no control forces the results obtained

with either types of impedance matrix are very good. When the control forces are active, the
result which line up best with the experimental data are achieved when the four impedance
matrices Z

11
, Z

12
, Z

21
and Z

22
are calculated for a freely suspended mount. When there is

no control, the main contribution to the vibration transmission is given by the axial
vibration of the mount. Thus, the modelling of the impedance parameters related to the
angular d.o.f.s is not crucial. When control is applied, however, the axial vibration of the
mount at the junction with the receiver plate is cancelled, so that the vibration transmission
is controlled by the angular displacements. In this case, the modelling of the impedance
parameters related to the angular d.o.f.s is important since it determines the level of
vibration transmission after control.

In view of these results, it has been chosen to present in this paper the results obtained by
using the matrix model with the four impedance matrices Z

11
, Z

12
, Z

21
and Z

22
calculated

for a freely suspended mount.
If the inertial e!ects due to the components used to connect the mounting system to the

plates and to connect force and velocity sensors at the top of the mounts are also accounted
and modelled as a pair of rectangular parallelepiped block masses connected at the mount



Figure A6. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control
of the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-aluminium mounts having block masses at the ends:==, experimental predictions, **,
simulations assuming the mount element freely suspended.

Figure A7. Estimate of the receiver K
Er

kinetic energy without (top plot) and with (bottom plot) active control
of the out-of-plane velocities at the receiver mounts junction when the primary force F

p3
is exciting the two-panel

system with three-aluminium mounts having block masses at the ends:==, experimental predictions, **,
simulations assuming the mount element pinned in x and y directions.
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ends, the four impedance matrices Z
11

, Z
12

, Z
21

and Z
22

assume the following form:

Z
11
"

ZS2S2
Nzw

#ju= 0 0

0 ZS2S2
Mxhx#juI

x
0

0 0 ZS2S2
Myhy#juI

y

, Z
12
"

ZS2S5
Nzw

0 0

0 ZS2S5
Mxhx 0

0 0 ZS2S5
Myhy

,

(B30, B31)

Z
21
"

ZS5S2
Nzw

0 0

0 ZS5S2
Mxhx 0

0 0 ZS5S2
Myhy

, Z
21
"

ZS5S5
Nzw

#ju= 0 0

0 ZS5S5
Mxhx#juI

x
0

0 0 ZS5S5
Myhy#juI

y

.

(B32, B33)

where= is the weight of the top or bottom block masses, I
x
and I

y
are the mass moment of

inertia with reference to the x- and y-axis of the system of reference placed at the mount
ends.

The excitation matrices V
m

used in equations (55) or (56) relates the force and moment
parameters at the mounts junctions to the single inertial control axial force or the pair of
reactive axial forces acting on each mount. As shown in Figure A2 the reactive or inertial
control excitation are modelled as acting at each end of the mounts so that the excitations
sub-matrix <

1
has the following form

V
1
"

1
0
0

. (B34)
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